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bstract

Mixtures consisting of zirconocene difluorides Cp′
2ZrF2 (Cp′ = substituted or nonsubstituted �5-cyclopentadienyl) as pre-catalysts and

iisobutylaluminumhydride i-Bu2AlH as activator were found to be active catalysts in the room-temperature hydrodefluorination (HDF) of

uorinated pyridines. Evaluation of these systems established rac-(ebthi)ZrF2 (1) and Cp2ZrF2 (3) together with i-Bu2AlH as active catalysts

n the room-temperature hydrodefluorination (HDF) of pentafluoro-pyridine. The active species for the conversion were the actually formed
ydrides [rac-(ebthi)ZrH(�-H)]2 (2) and [Cp2ZrH(�-H)]2 (4). The results we obtained (rt, 24 h, turn over number 67) showed a significantly
etter performance compared to other investigations published before for this HDF reaction.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Fluorocarbons are chemically inert as a consequence of
he great strength of the C F bond which arises from the
mall size and the high electronegativity of the fluorine
tom. Nevertheless, the activation of several carbon–fluorine
onds by transition-metal complexes was summarized in
any reviews [1–6]. There are examples for the activation

f C F bonds by group four electron-deficient transition-
etal reagents from zirconium and titanium with C F bond

leavage, too. One of the first examples for titanium was
eported from Stone and co-workers [7], who pyrolysed
p2Ti(C6F5)2 to obtain Cp2Ti(C6F5)F. Later Burk and co-
orkers described the elimination of a cyclopropane (CH2)2CR2
n the reaction of a tetrakis(trifluoromethyl)cyclopentadienone-
itanacyclobutane [Cp2Ti(CH2)2CR2][O C(CCF3)4] and
he subsequent F-abstraction to a titanocene-fluoro-dienone
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omplex Cp2Ti(F)[(O–C(CCF3)3C CF2)] [8]. Beckhaus
nd co-workers [9] published the complete defluorination
f trifluoromethyl-substituted Cp-ligands by titanium amide
omplexes. Similar reactions were reported by Deck et al.
10] for corresponding pentafluorophenyl-substituents of
yclopentadienyl and indenyl ligands. Hessen and co-workers
ublished that the complex [Cp∗

2Ti(�1-FC6H5)][BPh4] yields
ith trifluorotoluene 1,2-diphenyl-1,1,2,2-tetrafluoroethane

nd Cp∗
2TiF2 [11]. Stoichiometric and certain catalytic C–F

ond activations for the aromatization of cyclic perfluoro-
arbons were achieved by using titanocene and zirconocene,
enerated by Cp2MCl2 (M = Ti, Zr) and Mg/HgCl2 or Cp2ZrCl2
nd Al/HgCl2 [12]. Zirconocene forming systems, such as
p2ZrPh2 or Cp2ZrCl2/2 n-BuLi can defluorinate effectively
erfluorodecaline to perfluoronaphthalene [13].

2-Fluoro- and 3-fluoropyridine were defluorinated by
arious complexes Cp′

2MCl2 (M = Ti, Zr, Hf; Cp′ = Cp, Cp*) in
ombination with different aluminum compounds as reduction

gents [14]. Jones and co-workers described in a series of
apers the activation of several types of C F bonds in alka-
es, arenes and olefins by using Cp∗

2ZrH2. The mechanistic
nvestigations had shown different pathways depending on

mailto:uwe.rosenthal@ifok-rostock.de
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Scheme 1. Catalytic cycle.

he used substrate [15–21]. Caulton and co-workers reported
hat Cp2ZrHCl reacts with fluoroethylene to give Cp2ZrFCl,
p2Zr(CH2CH3)Cl and Cp2ZrF2 (3) [22]. In the reaction of

ac-(ebthi)Zr(Me)(NHtBu) with pentafluoro-pyridine Bergman
nd co-workers obtained via the monomeric imidozirconocene
omplex [rac-(ebthi)Zr NtBu] an activation of the ortho C F
ond and the formation of an amininopyridinato complex
ac-(ebthi)ZrF(-NtBu-2-C5NF4) [23]. Mostly zirconocene
ydride complexes were used in C F bond activation reactions.

p′
2ZrF2 + 2i-Bu2AlH −→

−2i-Bu2AlF
0.5[Cp′

2ZrH(�-H)]2 (1)

(1) : Cp′
2 = rac-(ebthi) (2) : Cp′

2 = rac-(ebthi)

(3) : Cp′
2 = Cp2 (4) : Cp′

2 = Cp2

Recently, we published that, in contrast to the dichloride
ac-(ebthi)ZrCl2 [24], the difluoride rac-(ebthi)ZrF2 (1) [25,26]
eacted with two equivalents of i-Bu2AlH to form the com-

lex [rac-(ebthi)ZrH(�-H)]2 (2) (Eq. (1)) [27,28]. Interestingly,
nder analogous conditions the Cl-ligands of rac-(ebthi)ZrCl2
ere not replaced by H upon treatment with i-Bu2AlH and only
nchanged starting material was isolated [27]. Fluoride, obvi-

o
(
2
z

Scheme 2. Stoichiometric reactions of [rac-(ebthi)ZrH
atalysis A: Chemical 261 (2007) 184–189 185

usly, is the more labile ligand compared with chloride. In the
ight of these results of zirconocene difluorides, we tried to real-
ze a catalytic cycle (Scheme 1) in which cleavage of the Zr F
ond by interaction with Al H yields Al F and Zr H from
hich the latter reacts with C F to form C H and again start-

ng Zr F bonds. Driving force for this cycle is the formation of
trong Al F bonds.

. Results and discussion

.1. Basic stoichiometric reactions

To evaluate the best pre-catalysts, experiments were con-
ucted to find out if the exchange of fluoride by hydrogen
roceeds for other zirconocene complexes, too. In NMR exper-
ments of the reaction of Cp2ZrF2 (3) with two equivalents of
-Bu2AlH, the formation of [Cp2ZrH(�-H)]2 (4) was observed
Eq. (1)). At room-temperature, nearly quantitatively clean com-
lex 4 was formed, whereas at 70 ◦C, the spectra indicated
everal byproducts. In contrast to these results, the difluoride
p∗

2ZrF2 and i-Bu2AlH did not form dihydride Cp∗
2ZrH2. At

igher temperature, decomposition reactions occured. It was
ublished, that Cp∗

2ZrH2 and Cp∗
2ZrF2 under hydrogen conpro-

ortionate at 150 ◦C to Cp∗
2Zr(H)F [29]. In contrast to this result,

mixture of rac-(ebthi)ZrF2 (1) and [rac-(ebthi)ZrH(�-H)]2 (2)
id not change its NMR spectra after several weeks at 100 ◦C.

The complexes Cp′
2ZrCl2 (Cp′

2 = rac-(ebthi), Cp2, Cp∗
2)

pon treatment with i-Bu2AlH gave no appreciable exchange
eactions of Cl by H. This was the reason why for further experi-
ents rac-(ebthi)ZrF2 (1), [rac-(ebthi)ZrH(�-H)]2 (2), Cp2ZrF2

3) and [Cp2ZrH(�-H)]2 (4) were used.
To find out well-suited substrates, we checked the reactions
f different organofluorides with [rac-(ebthi)ZrH(�-H)]2 (2)
Scheme 2) or [Cp2ZrH(�-H)]2 (4) (Scheme 3). With complex
no reactions were noticed with fluorobenzene, hexafluoroben-

ene and with 1-fluoro-hexane at 80 ◦C, 24 h in toluene solu-

(�-H)]2 (2) with different fluorinated substrates.
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Scheme 3. Stoichiometric reactions of [Cp2Z

ion. Nevertheless, after a longer reaction time of 68 h at 70 ◦C
n a NMR tube, a mixture of [rac-(ebthi)ZrH(�-H)]2 (2) and
-fluoro-hexane in toluene gave the complex rac-(ebthi)ZrF2
1) together with n-hexane and, the 19F resonance of 1-fluoro-
exane disappeared, but these reaction conditions were unuseful
or catalytic experiments.

Fluorbenzene reacted with [Cp2ZrH(�-H)]2 (4) to benzene
nd the difluoride 3, and hexafluorobenzene gave a mixture of
entafluorobenzene, hydrogen and the complexes Cp2ZrF2 (3)
nd Cp2Zr(C6F5)F [38] according to results by Jones and co-
orkers [15].
Best stoichiometric results were obtained with 2-fluoro-

yridine, giving pyridine and pentafluoro-pyridine which
eacted at rt to 2,3,5,6-tetrafluoro-pyridine and Cp2Zr(4-
5F4N)F.
An additional point was to check the reactivity of the sub-
trates towards i-Bu2AlH as the activator (Scheme 4). As shown
n Schemes 2 and 3, only fluorobenzene and the fluorosubsti-
uted pyridines reacted with the zirconocene hydrides (2 and 4).

t
m
i
f

Scheme 4. Stoichiometric reactions of i-Bu2A
H)]2 (4) with different fluorinated substrates.

luorobenzene and pentafluoro-pyridine gave no reaction with
-Bu2AlH. With 2-fluoro-pyridine the formation of an adduct
ith i-Bu2AlH or with the formed i-Bu2AlF is assumed.
According to these results, we considered only fluorobenzene

nd pentafluoro-pyridine to be suitable as substrates for a clean
nvestigation of the catalytic HDF reaction.

.2. Catalytic reaction

For fluorobenzene, the catalytic reaction was complicated by
n unexpected problem. The difluoride Cp2ZrF2 (3) reacted as
xpected with i-Bu2AlH to the zirconocene hydride [Cp2ZrH(�-
)]2 (2) and i-Bu2AlF. But before reacting productively with the
uorobenzene, the zirconocene hydride formed with i-Bu2AlF a
table complex. In this case, the hydride reacts very slowly with

he substrate and is desactivated by the formed diisobutylalu-

inumfluoride i-Bu2AlF. In the case of the pentafluoro-pyridine,
ts activated C F bond reacts faster with [Cp2ZrH(�-H)]2 (4) to
orm regioselectively the 2,3,5,6-tetrafluoro-pyridine. This was

lH with different fluorinated substrates.
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ination (HDF) of pentafluoro-pyridine.
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Table 2
Comparison of relevant bond enthalpies

Bond Bond enthalpy (kJ/mol)

Al F 663.6 ± 6.3
Al H 284.9 ± 6.3
Zr F 616 ± 15
C F 552
C H 338.4 ± 1.2
S
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Scheme 5. Catalytic hydrodefluor

he reason why pentafluoro-pyridine was used as a model for the
DF (Scheme 5).
The catalytic system consists of i-Bu2AlH to which in the

atio of 1:1.2 the complexes 1–4 were added in toluene in a con-
entration of 0.5–10 mol% together with pentafluoro-pyridine as
he substrate. After a reaction time of 24 h at rt, the products were
nalyzed by gaschromatography. The results are summarized in
able 1.

Generally, the “turn over number” (T.O.N.) of the here inves-
igated systems depends on the ligands used. Higher yields
ere obtained with the ebthi-ligand compared to the Cp-ligands

Table 1 entries 1–4 versus 9–12 and entries 5–8 versus 13–15).
n one side this result is explained by the sterical hindrance
f the ebthi-ligand. On the other, starting from [Cp2ZrH(�-
)]2 (4), used as a pure complex or formed from Cp2ZrF2 (3)

nd pentafluoro-pyridine, the formation of complex Cp2Zr(4-
5F4N)F as an inactive by-product, could explain lower activity
f complexes with Cp-ligands.

There is no big difference, if the systems are started with the
ifluorides (1, 3) as pre-catalysts or directly with the hydrides
2, 4) as the real catalysts (Table 1 entries 9–12 versus 13–15 and
ntries 1–4 versus 5–8). One can assume that there is a nearly
uantitative conversion of the difluorides to the hydrides. This
s supported by the NMR investigation of the stoichiometric
eactions which came to the same result.

To compare our result to a similar reaction, one can consider

very recently published investigation in which low-coordinate

ron(II) fluorides were converted by Et3SiH to the correspond-
ng hydrides [30]. Compared to our systems, these catalysts were
ound to hydrodefluorinate pentafluoro-pyridine at higher tem-

able 1
DF of pentafluoro-pyridine with i-Bu2AlH and catalysts 1–4

umber Catalyst Catalyst (%) Yield (%) Conversion (%) T.O.N.

1 1 0.5 26 53 57
2 1 1.0 40 57 40
3 1 5.0 67 83 15
4 1 10.0 80 82 8

5 2 0.5 33 44 67
6 2 1.0 42 60 41
7 2 5.0 48 79 10
8 2 10.0 67 90 7

9 3 0.5 8 37 18
0 3 1.0 8 37 9
1 3 5.0 40 56 8
2 3 10.0 60 75 6

3 4 1.0 17 70 18
4 4 5.0 64 86 11
5 4 10.0 67 86 6

re-catalyst: rac-(ebthi)ZrF2 (1), Cp2ZrF2 (3). Catalyst: [rac-(ebthi)ZrH(�-H)]2

2), [Cp2ZrH(�-H)]2 (4).

a
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i F 552.7 ± 21

erature of 45 ◦C with longer reaction time of 4 days and a small
urn over number of only 3.5.

In principle, one could think to use Si H instead of Al H
o activate Zr F bonds. Comparison showed a bigger bond
nthalpy of Zr F (616 kJ/mol) compared to Si F (552 kJ/mol).
hat is the reason why we preferred Al H bonds as activators.
riving force for our catalytic system is the high stability of the
l F bond [31] (Table 2).
In an recent paper, Ozerov and co-workers described a very

ffective catalytic hydrodefluorination of aliphatic C(sp3) F
onds at room temperature by choosing a mixture of Et3SiH and
Ph3C][B(C6F5)4] [32]. In these systems, [Et3Si][B(C6F5)4] as
ynthetic equivalent of R3Si+ was formed giving turn over num-
ers up to 126.

Our preliminary experiments with mixtures of i-Bu2AlH
nd [Ph3C][B(C6F5)4] [33] or alternatively [Ph3C][Al(C6F5)4]
34] showed a similar reactivity in the catalytic HDF. In these
ystems, “[i-Bu2Al][B(C6F5)4]” or “[i-Bu2Al][Al(C6F5)4]” are
ssumed as synthetic equivalent of R2Al+. Similar complexes
ere described [35]. Such species are more active in the HDF
ith fluoroarene and aliphatic fluorides as substrates. As first

xamples for these non-activated fluorocarbons fluorobenzene,
rifluorotoluene and 1-fluoro-hexane were investigated, reacting
ffectively at room temperature [36,37].

. Experimental

.1. Stoichimetric reactions

.1.1. Cp′
2ZrF2 with i-Bu2AlH

In Schlenk tubes, the fluoro complexes 1 or 3 (0.2 mmol) were
issolved in benzene-d6 (0.5 mL) and mixed with i-Bu2AlH
0.4 mmol, 1 M in toluene) in benzene-d6 (1.0 mL). The mix-
ure was stirred under argon for 24 h at room-temperature and

0 ◦C and analyzed by NMR investigations. For Cp′ = Cp, the
omplex [Cp2ZrH(�-H)]2 (4) was identified (1H NMR (C6D6)
[ppm]: −3.45 (t), 3.85, 5.75) [39]) and for Cp′

2 = ebthi, the
omplex [rac-(ebthi)ZrH(�-H)]2 (2) was found (same data as in
ef. [27]). For Cp′ = Cp*, no Cp∗

2ZrH2 [40] was detected.
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.1.2. Zirconocene hydrides with organofluoro compounds
In Schlenk tubes, the zirconocene hydrides 2 or 4 (0.5 mmol)

ere dissolved in solvent (0.5 mL). To this solution, the
rganofluoro compounds (0.5 mmol) in solvent (1.0 mL) were
dded. The products were analyzed by NMR investigations
nd/or GC–MS measurements.

Complex [rac-(ebthi)ZrH(�-H)]2 (2) gave in toluene solution
fter 24 h no reactions with 1-fluoro-hexane (at 80 ◦C), fluo-
obenzene (at 100 ◦C) and hexafluorobenzene (at 65 ◦C).

Complex 2 and 1-fluoro-hexane were solved in toluene-d8
n a NMR-tube. After 68 h at 70 ◦C, the 19F spectra show
ac-(ebthi)ZrF2 (1) [25] and the resonance of 1-fluoro-hexane
isappeared. With 2-fluoro-pyridine (at 100 ◦C) as products
yridine and rac-(ebthi)ZrF2 (same date as in refs. [25,26])
ere indicated. With pentafluoro-pyridine as products 2,3,5,6-

etrafluoro-pyridine (1H NMR (C6D6): δ = 6.37 (m, 1H, CH)
ppm], 19F{1H} NMR (C6D6): δ = −90.3 (o-C–F), −138.3 (m-
–F) [ppm]) and again rac-(ebthi)ZrF2 (1) were identified (same
ata as described in refs. [25,26]).

Complex [Cp2ZrH(�-H)]2 (4) gave in analogous investiga-
ion at 70 ◦C in toluene solution no reaction with 1-fluoro-
exane. According to results obtained by Jones and co-workers,
uorobenzene reacted with [Cp2ZrH(�-H)]2 (4) in THF at 60 ◦C

o benzene and the difluoride 3 [15]. Hexafluorobenzene gave
mixture of pentafluorobenzene, hydrogen and the complexes
p2ZrF2 (3) and Cp2Zr(C6F5)F. [15] The 2-fluoro-pyridine

ormed in THF at 70 ◦C pyridine and difluoride 3. Pentafluoro-
yridine reacted with [Cp2ZrH(�-H)]2 (4) at rt to 2,3,5,6-
etrafluoro-pyridine, Cp2ZrF2 (3) and Cp2Zr(4-C5F4N)F (same
ata as in ref. [38]).

.1.3. i-Bu2AlH with organofluoro compounds
In NMR tubes, the corresponding organofluoro compounds

0.9 mmol) were dissolved in benzene-d6 (0.5 mL). To this solu-
ion i-Bu2AlH (1.35 mmol) were added. The mixture was stirred
nder argon for 24 h at room-temperature and also at 70 ◦C. After
eactions, the products were analyzed by NMR investigations
nd/or GC–MS measurements. Fluorobenzene and pentafluoro-
yridine gave only the starting materials.

.2. Catalytic hydrodefluorination of pentafluoro-pyridine

.2.1. i-Bu2AlH and Cp′
2ZrF2

In a Schlenk tube, Cp′
2ZrF2 (0.4 mmol) (Cp′

2 = rac-(ebthi)
1) or Cp2 (3)) as the pre-catalyst was dissolved in 20 mL of
oluene and hexadecane (0.2 mL) was added as the internal
tandard. The solution was treated with i-Bu2AlH (4.8 mmol)
nd pentafluoro-pyridine (0.44 mL, 4.0 mmol). The mixture was
tirred at rt for 24 h. A sample was quenched in methanol and
nvestigated by GC.

.2.2. i-Bu2AlH and [Cp′
2ZrH(μ-H)]2

In a Schlenk tube, [Cp′
2ZrH(�-H)] (0.4 mmol) (Cp′

2 =
2
ac-(ebthi) (2) or Cp2 (4)) as the catalyst were dissolved in
0 mL of toluene and hexadecane (0.2 mL) was added as the
nternal standard. The solution was treated with pentafluoro-
yridine (0.44 mL, 4.0 mmol) and i-Bu2AlH (4.8 mmol). The

[

atalysis A: Chemical 261 (2007) 184–189

ixture was stirred at rt for 24 h. A sample was quenched in
ethanol and investigated by GC.

. Conclusion

A new catalytic cycle was established in which cleavage
f the Zr F bond by interaction with Al H yields Al F and
r H from which the latter reacts with C F to form C H
nder recreation of Zr F bonds. Driving force for this cycle
s the formation of strong Al F bonds. This cycle was real-
zed in the room-temperature hydrodefluorination (HDF) of
entafluoro-pyridine. Evaluation of these systems established
ac-(ebthi)ZrF2 (1) and Cp2ZrF2 (3) as pre-catalysts which give
ogether with i-Bu2AlH as an activator active catalysts. The
ctive species for the conversion were the formed hydrides [rac-
ebthi)ZrH(�-H)]2 (2) and [Cp2ZrH(�-H)]2 (4). The results we
btained (rt, 24 h, turn over number 67) showed a significantly
etter performance compared to other investigations published
efore for this HDF reaction. Generally, the “turn over number”
f the, here investigated, systems depends on the ligands used.
igher yields were obtained with the ebthi-ligand compared to

he Cp-ligands. No big difference was found, if the systems are
tarted with the difluorides as pre-catalysts or directly with the
ydrides as the real catalysts. Bergman’s monomeric imidozir-
onocene complex [rac-(ebthi)Zr NtBu], gives an ortho C F
ond cleavage of pentafluoro-pyridine [23], and our alkyne com-
lex Cp2Zr(pyridine)(�2-Me3SiC2SiMe3), forms Cp2ZrF(4-
5NF4) by para C F bond cleavage of pentafluoro-pyridine

38]. These undesired side reactions are avoided if zirconium
ydride complexes are used to catalyze HDF reactions.
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